
When designing database
applications, it’s often nec-

essary to limit access to vital data.
Access to this data can be obtained
by using the proper user name and
password. Delphi database appli-
cations inherit default security
measures when using a database
server that requires users to login
to the server. Such measures
include displaying a default login
dialog box, see Figure 1, to obtain a
valid user name and password in
order to establish a connection to
the database.

Under certain circumstances
you might want to override
Delphi’s default and give your
users access to the data without
having to login every time they
launch your application. Or,
perhaps you want to provide your
own custom login dialog box. You
might also want to allow one user
to logoff and log back in on the
same machine without closing the
application. This article will show
how to perform these tasks.

No Login Dialog
Typically, you connect data-aware
components through a TDataSource
component to a TTable component
which is directly linked to a table in
the database. The TTable compo-
nent connects to the database
server by its Alias property. You
define aliases by using the
BDECFG.EXE utility that ships with
Delphi.

Note: When I refer to the TTable
component, I am also referring to
the TQuery and TStoredProc
components since all are TDataset
descendants.

For database servers which
enforce security, a login dialog box
will automatically be displayed to
prompt the user for a valid user
name and password. To prevent
the login dialog box from display-
ing, you must use the TDataBase
component to establish the initial

connection to the database server.
The TDatabase component
provides additional functionality
that gives you greater control over
your database connection in addi-
tion to allowing you to customize
server logins. In this article, I won’t
go into all the features of TDatabase,
instead, I’ll focus specifically on the
login process.

When using a TDatabase compo-
nent for preventing the login dialog
from displaying, the following
TDatabase properties must be set
accordingly:
➣ AliasName Set to an existing BDE

alias which has already been
defined with the BDECFG.EXE
utility. This is the same value
typically used as the Alias prop-
erty for TTable and TQuery com-
ponents when a TDatabase
component is not used.

➣ DatabaseName Set to an applica-
tion specific alias, known only
by the application using the
TDatabase component. TTable,
TQuery and TStoredProc compo-
nents will use this value for
their Alias property.

➣ Login Prompt Set to false in
order to force the application to
look in the TDatabase’s Params
property for the user name and
password.

➣ Params Initialize to contain the
user name and password. This
is done by invoking the String
List Editor for this property and
specifying the strings as shown
in Figure 2.

Note: Make sure that there are no
spaces in the strings that specify
the user name and password,
otherwise the connection will fail.
Once you’ve established the

Customised Logins
Taking over Delphi’s default login for database acess
by Xavier Pacheco

➤ Figure 1
Delphi’s
default
login dialog

➤ Figure 2
Initializing
the Params
property
with a user
name and
password

28 The Delphi Magazine Issue 4

TDatabase property settings, set
your TTable.Alias property to
reflect the value of the
TDataBase.DatabaseName property.
This value will appear in the drop
down list for the TTable’s Alias
property in the Object Inspector.

Now you can connect to the
server by setting the TDatabase
component’s Connected property to
true at design-time in the Object
Inspector, or at run-time with:

Database1.Connected := true;

This will prevent users from having
to type in a user name and
password every time they run your
application.

Custom Login Dialogs
Instead of using the default login
dialog provided by Delphi, you can
design and use your own login for
your database applications. When
doing so, you must pass the values
obtained from your login dialog
box to the user name and
password values of the TDatabase
component. This is done in the
TDatabase component’s OnLogin
event handler, which is called
whenever a TDatabase component
is connected and when its
LoginPrompt property is set to true.
A typical OnLogin event handler
that accomplishes this is shown in
Listing 1.

The LoginDlg is first created and
the values from it are used to set
the user name and password
values for the TDatabase compo-
nent by setting the appropriate
items in the LoginParams parame-
ter. LoginDlg can be any form from
which the user name and password
can be obtained. Therefore, your
login dialog can have a much
different look, like that shown in
Figure 3.

Allowing Users
To Logoff And Login
You can give your users the capa-
bility of logging off and logging
back in, perhaps as a different user,
in the same application without
closing down the application. To
do this, you must provide a method
for logging off and logging back in.
The example I’ve created for this

article accomplishes this by pro-
viding login and logoff buttons on
the main form, shown in Figure 4.

DataBase1’s Alias property is set
to IBLOCAL. This alias was preset
when you installed Delphi and
points to Interbase demo tables.
DataBase1’s DatabaseName property
is set to MainDB. Table1’s Alias
property is therefore set to MainDB
so that its connection goes through
DataBase1. I’ve selected the
COUNTRY table as the table to
view. The TDatasource and TDBGrid
components are used to display
the data once the connection is

made and the user has successfully
logged in. Initially, Database1’s
Connected property is set to false as
is Table1’s Active property. Listing
2 shows the complete source code
for the main form.

TForm1 contains three public
variables UserName, Password and
LoginSuccess. The Button1Click
method is the login button’s
OnClick event handler. Here, I
invoke the LoginForm and initialize
UserName and Password with the
values from LoginForm. Then I set
Database1’s Connected property to
false and back to true again. This

procedure TForm1.Database1Login(Database: TDatabase; LoginParams: TStrings);
var
 LoginDlg: TLoginForm;
begin
 LoginDlg := TLoginForm.Create(Application);
 try
 if LoginDlg.ShowModal = mrOk then begin
 { Get the user name and password from the form’s variables }
 LoginParams.Values[’USER NAME’] := LoginDlg.UserNameEdit.Text;
 LoginParams.Values[’PASSWORD’] := LoginDlg.PassWordEdit.Text;
 end;
 finally
 LoginDlg.Free;
 end;
end;

➤ Listing 1 OnLogin event handler for TDatabase component

➤ Figure 3
A Custom
Login Dialog

➤ Figure 4
Main form
for the
login/logoff
example
project

November 1995 The Delphi Magazine 29

causes the Database1Login method
to execute before the connection is
actually made. Database1Login is
Database1’s OnLogin event handler.
Since UserName and Password have
already been set, their values are
used to set the LoginParams values
in the Database1Login method.

Note: The LoginForm is defined in
the unit LOGIN1.PAS included with
the source on the accompanying
disk. It is simply the form shown in
Figure 3.

If the login was successful (the
user typed in a value user name
and password) LoginSuccess is set
to true, otherwise the except block
is executed, which displays a
message and sets LoginSuccess to
false. Since the finally block is
always executed, whether the login
attempt is successful or not, you
can use LoginSuccess to determine
what, if any, application level
security measures must be taken.
Such a measure may be displaying
or hiding various controls on the
main form. In this example, I only
display a message.

unit Login0;
interface
uses
 SysUtils, WinTypes, WinProcs, Messages, Classes,
 Graphics, Controls, Forms, Dialogs, Grids, DBGrids,
 DB, DBTables, StdCtrls;
type
 TForm1 = class(TForm)
 Database1: TDatabase;
 Table1: TTable;
 DataSource1: TDataSource;
 DBGrid1: TDBGrid;
 Button1: TButton;
 Button2: TButton;
 procedure Database1Login(Database: TDatabase;
LoginParams: TStrings);
 procedure Button1Click(Sender: TObject);
 procedure Button2Click(Sender: TObject);
 private { Private declarations }
 public { Public declarations }
 UserName,
 PassWord: String;
 LoginSuccess: Boolean;
 end;
var Form1: TForm1;

implementation
uses Login1; { Make sure to add this to the uses clause }
{$R *.DFM}

procedure TForm1.Database1Login(Database: TDatabase;
 LoginParams: TStrings);
begin
 { Get user name and password from form’s variables }
 LoginParams.Values[’USER NAME’] := UserName;
 LoginParams.Values[’PASSWORD’] := PassWord;
end;

procedure TForm1.Button1Click(Sender: TObject);
begin

 if LoginForm.ShowModal = mrOk then begin
 { Set the form’s UserName and Password variables to
 that specified by the LoginForm edit controls }
 UserName := LoginForm.UserNameEdit.Text;
 PassWord := LoginForm.PasswordEdit.Text;
 try
 try
 { Disconnect the database }
 DataBase1.Connected := false;
 { Re-connect the database }
 DataBase1.Connected := true;
 { Set the table to active }
 Table1.Active := true;
 LoginSuccess := true;
 except
 on E:EDBEngineError do begin
 MessageDlg(E.Message, mtError, [mbok], 0);
 LoginSuccess := false;
 end;
 end;
 finally
 { Here you might handle application level security
 such as hiding or displaying controls based on
 the value of LoginSuccess }
 if LoginSuccess then
 ShowMessage(’YES!’)
 else
 ShowMessage(’Nope’);
 end;
 end;
end;

procedure TForm1.Button2Click(Sender: TObject);
begin
 DataBase1.Connected := false;
 UserName := ’’;
 Password := ’’;
end;
end.

➤ Listing 2 LOGIN0.PAS – The main form’s unit

The Logoff button’s OnClick
event handler Button2Click simply
sets Database1’s Connected property
to false and sets UserName and
Password to empty strings. This
effectively logs the current user
out.

You are not restricted to
Delphi’s default behaviour for
logging on to database servers. By
using and building on the tech-
niques I’ve shown here, you can
design the security requirements
for your Delphi application around
the security requirements of both
the users of your application and
the tasks that your application
aims to solve.

Xavier Pacheco is a Delphi
Developer with TurboPower
Software and co-author of
“Delphi Developer’s Guide” by
Sams Publishing. You can reach
Xavier on CompuServe at
76711,666

30 The Delphi Magazine Issue 4

	No Login Dialog
	Custom Login Dialogs
	Allowing Users To Logoff and Login

